
Chemical Physics Letters 494 (2010) 182–187
Contents lists available at ScienceDirect

Chemical Physics Letters

journal homepage: www.elsevier .com/locate /cplet t
Phase transition and crossover behavior of colloidal fluids under confinement

Sudhir K. Singh a, Jayant K. Singh a,*, Sang Kyu Kwak b, Goutam Deo a

a Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
b Division of Chemical and Biomolecular Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
a r t i c l e i n f o

Article history:
Received 17 April 2010
In final form 3 June 2010
Available online 8 June 2010
0009-2614/$ - see front matter � 2010 Elsevier B.V. A
doi:10.1016/j.cplett.2010.06.005

* Corresponding author.
E-mail address: jayantks@iitk.ac.in (J.K. Singh).
a b s t r a c t

We report a molecular simulation study on the non-monotonic behavior of critical temperature, Tcp, of a
confined Yukawa fluid. Close to the adhesive hard sphere (AHS) range of the surface–fluid interaction, Tcp

monotonically increases with increasing surface–fluid interaction range. Subsequently, after a certain
threshold value, depending on the surface interaction well depth, Tcp decreases monotonically with fur-
ther increase in the surface interaction range. On the other hand, critical density and pressure show
increasing monotonic trends with the surface interaction range. The crossover from 3D to 2D behavior
for colloidal fluid in attractive pores is observed around a slit width of 14 molecular diameters for the
studied system in this work.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Colloidal suspensions are well-defined mesoscopic particles
possessing linear dimensions ranging from 10 to 1000 nm and
are receiving increasing attention amongst scientists. The colloidal
particles, such as proteins, micelles, synthetic polymeric particles,
etc., are significantly larger than the interacting ambient mole-
cules, but small enough to show the random motion. Suspensions
of these colloidal particles play an important role in biology, e.g.
blood, but also many industrial products, such as paints, inks, food,
detergents and cosmetics. Colloidal systems have been recognized
as excellent model systems for various thermodynamical problems
in statistical physics [1,2]. In addition, colloids are also useful for
the investigation of non-bulk systems where geometrical con-
straints such as patterned walls, pores and channels have pro-
nounced effects on the static and dynamical properties. Since
such geometric confinements play an important role in many
physical, biological and chemical processes, studies with colloidal
suspensions may help to obtain a better understanding of several
phenomena, e.g. transport of particles through cell membranes or
catalytic reactions in zeolitic materials. Moreover, the effective
interaction between the charged colloids or colloidal particle and
ambient molecules or surfaces can be tailored by adding salt ions
or smaller colloids of varying size and concentrations. The possibil-
ity of tailoring the effective interactions enriches the physics of the
colloidal system compared to simple (atomic) fluids, and leads to a
wide range of practical applications as well as fundamental
interests.
ll rights reserved.
On the basis of some intriguing experimental observations in
aqueous suspensions of charged colloids [3,4] and subsequent
theoretical prediction [5] on charged colloidal spheres it can be
concluded that like-charged colloids, dispersed in an aqueous
solvent, spontaneously demix into a colloid-dilute ‘gas-like’ phase
and a colloid-dense ‘liquid-like’ phase. In further investigations
Klapp et al. studied the structure formation of charged colloidal
suspensions, in bulk and in slit pore geometry using theoretical
and experimental techniques [6,7].

Anderson and Lekkerkerker [8] have indicated that colloids dis-
play fascinating phase transitions between fluid–fluid, fluid–solid
and solid–solid phases. Numerous literature reports, pertaining
to colloidal and similar systems, show that the phase diagram is
sensitive to the attractive range of the potential [9–11]. When
the interaction potential becomes short-ranged, the stable fluid–
fluid phase transition disappears and only the solid–fluid coexis-
tence curve is thermodynamically stable. As shown by simulation
studies, the minimum range of attraction required for the fluid–
fluid coexistence in aqueous protein or similar systems is about
one sixth of the particle diameter [12]. For very short-ranged
attractions, smaller than about one twentieth of the particle diam-
eter, a stable isostructural solid–solid transition appears [13].

It has been observed that charged-stabilized colloidal suspen-
sions can display interesting thermodynamic behavior such as li-
quid–vapor coexistence [14] and stable voids [3,15] etc. Such
behaviors reveal an extraordinary cohesion phenomenon between
like-charged macro-ions with screened electrostatic interactions.
In those cases the relevant forces between particles can be well de-
scribed with hard-core attractive Yukawa (HCAY) potential. Its
interaction ranges can be varied from short range appropriate for
modeling of colloidal suspensions [16,17], protein solutions [18]
and fullerenes [19] to medium range, where it mimics the familiar
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LJ potential [20] or to long-ranged potentials. Much attention has
been paid in recent years to the HCAY potential model by its ana-
lytical tractability in the context of liquid state theories.

The liquid–vapor equilibrium of bulk phase HCAY fluids has
been already estimated by computer simulation [21–23] and some
theoretical efforts for these fluids have been done [24–26]. Despite
the importance of the Yukawa model in relation to the adhesive
hard sphere (AHS) potential [27–29], confining effects of surfaces
with varying attraction and screening range have not been studied
to make their connection to the detailed dependence of vapor–li-
quid phase diagram and critical properties of colloidal fluids. This
has a practical importance in the field of nano structure formation,
for example in processing of nanoparticles and evaporation-driven
self-assembly, where nano-colloidal suspension interacts with
each other. Hence, it is of significant interest to understand how
the behavior of the colloid fluid phase is influenced by the nano-
scopic confinement, where the interaction of confining surfaces
with confined atoms or molecules is smeared by the presence of
charged ions on the surface of the colloid. The non-monotonic
behavior of critical temperature, Tcp have been studied in other
model fluids in different confinements such as, square-well fluid
in a cylindrical pore of varying wall-fluid interaction strength,
ewf, which is reported by Zhang and Wang’s study [30] using DFT
calculations. Singh et al. [31,32] also reported a similar observation
of the non-monotonic change in Tcp for square-well fluids in slit
pores. In this current work, we address the effect of screening
parameter along with the surface attraction of the Yukawa-mod-
eled surfaces on the vapor–liquid phase behavior and critical prop-
erties of colloidal fluid and additionally, the 3D–2D crossover
behavior of the colloidal fluid in the slit-pore-confined geometry.
The rest of the Letter is organized as follows: in the next section,
we briefly describe methods used for calculating the phase equilib-
ria and critical properties by molecular simulation along with sim-
ulation details; the Section 3 presents results and discussion
followed by the conclusion in the Section 4.
2. Potential model and simulation details

We have simulated the colloidal system in the grand canonical
(GC) ensemble using transition matrix Monte Carlo (TMMC) tech-
nique [33], in order to locate the vapor–liquid phase equilibria of
the slit-pore-confined system. The model potential for fluid–fluid
and surface–fluid are represented by following expressions:

uff ðrÞ ¼
1 if r < rff

� eff rff

r expð�Kppðr � rff ÞÞ if r P rff

(
ð1Þ
uwf ðzÞ ¼
1 if z < rwf

ewf expð�Kwpðz� rwf ÞÞ if z P rwf

�
ð2Þ

where, the set of parameters (i.e. eff, rff , Kpp and ewf, rwf, Kwp) rep-
resent the potential depth, the hard-core diameter and the interac-
tion ranges of fluid–fluid and surface–fluid interactions,
respectively. In this work eff and rff are taken as unity and rwf is a
half of rff. All quantities reported in this work are made non-dimen-
sional using characteristic energy, eff, and length scale, rff. All sim-
ulations in this work are done at the fluid of a fixed Kpp = 3 and
cut-off radius 4. Moreover, ewf is varied discretely from 1 to 4. Sim-
ulations are conducted in the GC ensemble, where the chemical po-
tential l, the volume V and the temperature T are kept constant, and
the number of particles N and the energy U fluctuate. Detailed
methodology is described in the earlier work [23]. In this work,
the temperature, the pressure, the density are normalized with re-
spect to simulation units, but expressed simply by T, q and P,
respectively. Critical properties are estimated by using the coexis-
tence data obtained via GC-TMMC and the least square fit of the fol-
lowing scaling law [33]:

ql � qv ¼ Cð1� T
TC
Þb ð3Þ

where, ql, qv , and TC are coexistence liquid and vapor number den-
sities, and critical temperature, respectively, and C and b are fitting
parameters. The parameter b is also known as the order parameter
critical exponent. However, in the current investigation we have not
use mixed-field finite size scaling approach to evaluate the pore
critical temperature, but a recent study using finite size scaling
approach [34] for the estimation of critical point of Lennard–Jones
fluid in hard slit pore confinement show similar behavior as
reported in some other recent work [32,35] using the current
technique. The critical temperature, TC , estimated from Eq. (3) is
used to calculate the critical density, qc , from the least square fit
of the following equation:

ql þ qv
2

¼ qc þ DðT � TCÞ ð4Þ

where, D is a fitting parameter. Critical pressure, Pc , is calculated
using the least square fitting of the saturation pressure data ob-
tained from the GC-TMMC simulations to the following expression,
which has a form similar to the Antoine equation:

ln Pc ¼ A� B
Tc

ð5Þ

where, A and B are fitting parameters. The above empirical formula
has been used to obtain the critical pressure for confined square-
well fluids [32] and alkanes [36]. The saturated density profiles
(i.e. perpendicular to the slit surface), qz is obtained by recording
q(N, z) for each particle number sampled during GC-TMMC simula-
tions. Coexistence density profiles are finally obtained using the
following expression:

qðzÞvapor=liquid ¼
P

i2vapor=liquid

Q
CðiÞqði; zÞP

i2vapor=liquid

Q
CðiÞ

ð6Þ

where, PC is the coexistence probability density distribution ob-
tained by applying the histogram reweighting technique [37] on
the transition matrix data obtained from the GC-TMMC simulation.

GC-TMMC simulations are conducted with 30% displacement
and 70% insertion/deletion moves. We use different numbers of
particles for particular cases under consideration to keep optimal
simulation environments; for phase coexistence calculation at var-
ious H and a fixed Kwp = 1.8 and ewf = 2, maximum number of par-
ticles are varied from around 800–6200, depending upon H.
However, at a fixed H = 8 and ewf = 4, with various Kwp, maximum
number of particles are varied from 800 to 2000 and for the
hard-wall slit pore with H = 8, maximum number of particles are
varied from around 800–2400. Four independent runs are con-
ducted to obtain the statistical error in coexisting densities and
critical properties. The errors in Tc, qc and Pc for the studied slit
pore geometries are found to be less than 0.05%, 0.02% and 0.1%,
respectively.

3. Results and discussion

3.1. Vapor–liquid phase equilibria and critical properties under
confinement

In Fig. 1, we have shown the variation of surface–fluid potential
energy, Uwf, vs. distance, z, of colloidal molecules with a typical
surface well depths, ewf = 4 and for varying ranges of surface–fluid
interactions, Kwp. Increasing Kwp diminishes the effective attraction
of the surface-colloidal molecules and the behavior approaches to
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Fig. 1. Surface–fluid potential energies, Uwf, are shown for variable surface–fluid
interaction range, Kwp, with a typical well-depth of the surface–fluid attraction,
ewf = 4.
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the sticky-wall behavior as it becomes sufficiently large. At infi-
nitely large Kwp the surface behaves as hard-wall.

Fig. 2 illustrates the vapor–liquid phase coexistence envelopes
for a typical surface well-depths, ewf = 4 for varying Kwp in compar-
ison with the hard wall, ewf = 0. Similar behavior of vapor–liquid
coexistence envelope is observed with other values of ewf = 1 and
2. However, for the sake of clarity we have shown the coexistence
envelope only for ewf = 4. It is observed that at a smaller well-
depth, ewf = 1, with increase in the interaction range, i.e. decrease
in Kwp, critical temperature and density increases (figure not
shown). However, with such observation, an important question
arise that, will these critical properties increase, decrease or re-
main constant with the surface interaction range? Nevertheless,
the critical temperature under the confinement cannot exceed
the bulk critical temperature, hence it is expected that with further
increase in the interaction range the critical temperature will
either approach the bulk value or bear a non-monotonic behavior.
To realize this interesting behavior of critical properties, we have
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Fig. 2. Temperature–density vapor–liquid coexistence curve for a colloidal fluid in
the slit pore confinement of pore width H = 8, and at a typical wall–fluid interaction
well depth, ewf = 4 with variable interaction ranges, Kwp, are shown. Solid curves
represent the hard-wall coexistence densities with the symbol filled circle as the
critical point. Open and filled symbols represent the coexistence densities and the
critical points respectively. Symbols triangle, star, square and pentagon represent
the case with Kwp = 180, 30, 7 and 1.8, respectively.
run some simulations with comparatively higher well depths,
ewf = 2 and 4. For a complete view of the phenomenon a hard-wall
confined colloidal system is also investigated. As the surface be-
comes comparatively attractive, ewf = 4 and Kwp = 180 i.e., sticky-
wall, as compared to the hard-wall, critical temperature and den-
sity increase, and similar behavior is observed with the other stud-
ied cases of ewf = 1 and 2. Moreover, with further increase in the
interaction range, (i.e. from Kwp = 180 to 30) critical point mono-
tonically increases. Interestingly, with further increase in the inter-
action range to Kwp = 7, it is observed that critical temperature
decreases, however, critical density retains its increasing mono-
tonic nature. The decrease of the critical temperature and the in-
crease of the critical density are continued with further increase
in the interaction range to Kwp = 1.8, as depicted in Fig. 2.

To elucidate the non-monotonic trend of the critical tempera-
ture with the increase in the effective interaction range, some more
insightful discussions are required. From the scaling law point of
view [33], critical temperature and density depend on the relative
width of the coexistence envelope. From Fig. 2, it is clear that in
comparison with hard-wall (Kwp ?1, or ewf = 0) slit pore, the
width of the coexistence envelope comparatively increases with
increase in the interaction range from Kwp =1 to 180. The change
in the saturated vapor densities is insignificant with the change in
Kwp =1–180, yet the corresponding change in the liquid branch is
significant which consequently resulted in the increase of critical
temperature and density. In the comparison between Kwp = 180
and 30, the coexistence envelope in Fig. 2 shows that at Kwp = 30,
both vapor and liquid density branches shift toward higher value
but the comparative shift of the liquid density branch is higher,
which in turn resulted in a wider coexistence envelope at
Kwp = 30 as compared to 180. This resulted in increases of Tcp and
qcp. With further increase in the interaction range from Kwp = 30
to 7, the vapor density branch shows a significant increase but
the shift in the liquid density branch is comparatively insignificant.
These comparatively opposite changes cause the decrease of the
coexistence envelope width, hence the decrease of Tcp. Furthe in-
crease in the interaction range from Kwp = 7 to 1.8, led to an insig-
nificant change in the liquid density branch; on the other hand,
vapor density branch shifts toward a higher value and resulting
in the decrease of the coexistence envelope width and thus Tcp.
More insights are required to explain the interesting phenomenon,
which is the non-monotonic behavior of the critical temperature of
colloidal-like confined fluids, in particular with a fixed interaction
well-depth but varied interaction range. While converse examples
are emphasized in the introduction section, detailed investigations
on the local vapor and liquid phase densities at different Kwp’s must
be performed to validate the average coexistence densities of vapor
and liquid phases observed in the phase coexistence envelope of
Fig. 2.

In Fig. 3a and b local z-density profile of coexisting vapor and
liquid phases are shown respectively, for a typical case T = 0.6. To
observe the local structural behavior of the confined fluid near
the surface, local z-density profile of remaining slit width i.e., from
H/2 to H (z-direction) is not shown in (a) and (b) as the behavior is
same as in the first half of the pore. Fig. 3a shows that with increase
in the attraction range, vapor like phase become more and more
structured and intensity as well as width of the density peak in-
creases for the studied cases, Kwp = 180 to 7. However, when attrac-
tion range becomes sufficiently large as is the case with Kwp = 1.8,
intensity of the peaks nearest to either of the surfaces diminishes
at the expense of increase in peak width as can be seen from
Fig. 3b. Moreover, Intensity of the other peaks with Kwp = 1.8 is lar-
ger as compared to the peaks of lower attraction ranges. This in
turn resulted in increased average density of vapor phase as com-
pared to others. On the other hand, local structural behavior of li-
quid like phase is more interesting than the vapor like phase. It is
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shown in Fig. 3b that with increase in attraction range, intensity
and width of the peaks nearest to either of the pore surfaces in-
creases until Kwp = 30 (contrary to the vapor phase where the
increasing trend is until Kwp = 7) and then intensity of the peaks
nearest to the surfaces diminishes from Kwp = 7 until Kwp = 1.8, at
the expense of increase in peak width. Moreover, qualitatively
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intensity of other peaks follow similar trend as the vapor phase
peaks. Thus the two opposing behavior, i.e., decrease in intensity
of the peak and increase of peak width resulted in insignificant
change in average liquid phase densities for the case of Kwp = 30,
7 and 1.8, in spite of increase in the surface–fluid attraction range
as can be seen from the Fig. 1 of surface–fluid potential plot. Coex-
istence phase diagram of Fig. 2 shows insignificant change in liquid
phase densities for Kwp = 30, 7 and 1.8. With the local z-density
profiles of various Kwp, at a typical case of T = 0.6, it has been vali-
dated that the average values of fluid coexistence densities ob-
served in Fig. 2 are reasonable and hence the coexistence
envelope. This in turn resulted in the non-monotonic trend of crit-
ical temperature with change in Kwp.

In Fig. 4a–c, Tcp, qcp and Pcp are shown respectively, with two
typical cases of surface attraction well-depths, ewf = 2 and 4 with
a fixed H = 8 and various Kwp’s. Fig. 4a shows that as the interaction
range increases, Tcp follows non-monotonic paths depending the
surface well-depth, ewf.. At a stronger surface field, ewf = 4, the max-
imum in Tcp is observed at a comparatively smaller interaction
range; but at a weaker surface field, ewf = 2, the maximum of Tcp oc-
curs at larger interaction range. Moreover, at sticky-wall limit, crit-
ical properties with the studied smaller ewf, approach to the hard-
wall value prior to that seen for relatively larger ewf, as expected.
Interestingly, there only exist one maxima of Tcp for each ewf stud-
ied for H = 8. Contrary to the non-monotonic trend of Tcp, we ob-
served monotonically increasing trends in qcp and Pcp as shown
in Fig. 4b and c, for all cases under consideration, as the interaction
range increases.

3.2. Crossover from 3D to 2D behavior

In this work, the critical temperature is calculated by rectilinear
diameter approach as mentioned in Section 2. Fig. 5, for a typical
case of colloidal fluid at ewf = 2 and Kwp = 1.8, presents the variation
of the pore critical temperature, Tcp, reduced by 3D bulk value, i.e.
Tcp/Tcb, (where, Tcb = 0.722(1) is the bulk critical temperature pre-
dicted in the earlier investigation [23]) versus the slit width, H. It
has shown that Tcp/Tcb changes monotonically with H and slowly
approaches 1 for H much larger than 20. In the current investiga-
tion, we have studied the 3D to 2D crossover behavior of the con-
fined colloidal fluid as shown in the inset of Fig. 5. Fisher and
Nakanishi [38] with the help of scaling arguments showed that
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shown. In inset, crossover from 3D to 2D behavior is shown. All the simulation run
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interaction range Kwp = 1.8. Symbol circle represents the simulation data points.
the decrease in the critical temperature in larger pores should obey
the relation, (Tcb�Tcp)/Tcb = kH�1/m, where m is the critical exponent
for the correlation length and k is a proportionality constant. To ac-
count for the strongly adsorbed layer on pore walls it is necessary
to replace the true pore width, H, by a modified pore width, Heff =
H�t, where t represents the effective layering thickness. Using Is-
ing 3D (bulk) correlation length critical exponent m(3D) = 0.63,
and Ising 2D correlation length critical exponent[39], m = 1, we
have evaluated the effective layering thickness, t, of the adsorbed
layer in the slit pore by fitting the logarithmic form of the relation,
(Tcb�Tcp)/Tcb = k(H�t)�1/m. We observed that for larger pore width t
is insignificant irrespective of the surface attraction. However, for
smaller pores it is appreciable. In the current investigation with a
typical case of ewf = 2, Kwp = 1.8, and Kpp = 3, a layering thickness
is observed to be around 1.4 in the smaller pore regime. However,
in the larger pore regime the layering thickness of around
2.76 � 10�14 is extremely small. In the inset of Fig. 5, the relative
critical temperature, (Tcb�Tcp)/Tcb, is plotted as a function of the
effective slit width, Heff, on a log–log scale for a typical case. It is
evident from inset Fig. 5 that the crossover from 3D to 2D is at
around H �14 molecular diameters for the studied Yukawa system
in this work.
4. Conclusions

We have reported a simulation study aimed at evaluating the
dependence of the surface–fluid interaction well-depth and the
interaction range on the vapor–liquid coexistence and critical
properties of confined colloidal fluids. These investigations suggest
that having a fixed fluid–fluid interaction well-depth, the surface
interaction range plays an important role on the non-monotonic
behavior of the critical temperature of confined colloidal fluids.
Starting from extremely small interaction range, Kwp = 180, to the
larger interaction range, Kwp = 1.5, the critical temperature shows
a non-monotonic path, irrespective of the surface interaction
well-depth, ewf, studied in the current work. On the other hand,
critical density and pressure display a monotonically increasing
nature with the increase in the surface interaction range. In the
current work, we have also studied the 3D to 2D crossover behav-
ior of colloidal fluid. We observed that crossover behavior occurs at
around 14 molecular diameters for the considered Yukawa based
model colloidal system in the current work.
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